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_________________________________________________________________________ 

Abstract 

Many instances of severe plastic deformation produce a heterogeneous distribution of strain 

through a material. Common methods of describing the severity of deformation based on 

changes in the external dimensions of a specimen masks this heterogeneity, which is 

difficult to measure directly. This study describes a method of measuring internal strain 

based on the observation that networks of internal boundaries within a polycrystalline 

material deform locally in a manner congruent with the local metal flow. Appropriate 

measurements of the development of the spatial anisotropy of such networks with 

increasing deformation provide a basis for defining several measures of the local total 

strain. These quantities, called “grain strains” when the boundaries observed are grain 

boundaries, can serve as an experimental measure of the internal total strain at various 

locations in a specimen for comparison with computations based on finite element models 

using various constitutive relations. Experimental measurements of the grain strains at the 

center of ferritic steel sheet rolled in nominally 10% increments to 50% total reduction in 

thickness illustrate the method and correlate well with corresponding strains based on 

measures of the change in thickness of the sheet and the assumption of plane strain. 
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_________________________________________________________________________ 

1. Background 

Typical measures of the degree of deformation in a severe plastic deformation operation 

employ a single number derived from the change some conveniently measured external 

dimension of a specimen before and after deformation. Such measures imply uniform and 

homogeneous deformation throughout the deforming region, an assumption known not to 

be satisfied even for the simplest processes. Measures of the heterogeneity of deformation 

during such operations are necessarily destructive because of our inability to observe 

changes in the interior of the workpiece. Consequently the development of strain must be 

determined from destructive measurements made on specimens examined after successive 

increments of deformation. 

 

Two methods employed for this purpose are Physical Modeling (Aoyagi and Ohta, 1983; 

Piwnik, 1986), a simulation of the deformation process using a plasticine workpiece, and 

Visioplasticity (Shabaik and Thomsen, 1973). The latter technique employs initial billets of 

actual metallic workpiece materials that are sectioned prior to deformation, imprinted with 

a grid on the exposed section plane and reassembled before processing.  The workpiece is 

removed from the tooling before it has been completely deformed and sectioned to reveal 

the deformed grid. Measurements of the undeformed and deformed grids provide a basis for 

the computation of local measures of deformation. 
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Early studies of the development of microstructural anisotropy in rolled mild steel sheet by 

Hartley and Dehghani (1987) established that the principal axes of the Fabric Tensor 

characterizing microstructural anisotropy were parallel to the principal directions of 

deformation during rolling. Also, the principal values of a second rank tensor describing the 

spatial anisotropy of L(t), the mean linear intercept of test lines with grain ferrite 

boundaries along a direction parallel to the unit vector, t,  changed proportionately to the 

change in dimensions of the rolled sheet along the rolling, transverse and thickness 

directions. Recently, Hartley (2006) demonstrated that a measure of finite internal strain 

called grain strain can be defined based on the dimensions of the representation quadric of 

the spatial variation L(t) with t. The values of grain strain obtained from a quantitative 

analysis of the grain boundary network in the deforming region of a tensile specimen were 

found proportional to, but not equal to, corresponding measures of the bulk external strain. 

The lack of coincidence of these measures was attributed to the non-uniformity of 

deformation throughout the deforming region.  

 

In the following sections describe various finite strain measures based on homogeneous 

deformation of the bulk material and local deformation of microstructures that can be 

described by weak anisotropy*. Next, these measures are employed to analyze the 

development of total deformation at the midplane of a rolled iron sheet and are compared 

with comparable measures of finite bulk strain. The final section discusses the relative 
 

* Kanatani (1984) defines weak anisotropy as that for which, PL(t), the spatial variation of the mean linear 
intercept of grain boundaries with a test line parallel to the unit vector, t,  is quadratic in t. 
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merits of various measures of finite strain in this context and the difference between these 

measures and conventional measures of bulk strain. An application of the measurement to 

the verification of calculations employing various constitutive equations to model finite 

deformation is proposed. 

 

2. Finite Bulk Strain Measures 

The definitions of bulk strain† tensors applicable to a deformation process are based on 

stretch ratios calculated from changes in the external dimensions of a workpiece, assuming 

constant volume and any other geometric constraints applicable to the process. For 

example, a state of plane strain with no change in the width or long transverse dimension 

approximates the deformation of a sheet subjected to reduction in thickness by rolling. 

Then a billet with initial length, width and thickness, lo, wo and to, respectively, 

isochorically deformed by rolling along the length direction to reduce the thickness to the 

final dimensions l, w and t obeys the relationship  

 o o ol w t lwt=  (1) 

with wo = w. Since no rotation occurs globally, the rotation matrix in the polar 

decomposition of the deformation gradient is the identity matrix, R = I, leading to the result 

that the right and left stretch tensors, U and V, are equal, as are the right and left Cauchy-

 

† In the following discussion, strain refers to total strain, which for large deformations is, to a good 
approximation, equal to the plastic strain. 
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Green tensors, C and B. The stretch ratios in the principal directions of bulk deformation 

are  

 w t
o o

t 1, 1 and
t

Λ = Λ = Λ = =
Λ

. (2) 

Comparison with conventional measures of deformation by rolling is facilitated by noting 

that t = to - ∆t, so Λt = [1 - ∆t/to], where the second term in brackets is the fractional 

reduction in thickness due to rolling. Equation (2) permits all principal stretch ratios to be 

expressed in terms of this quantity. For the deformation considered, the right stretch tensor, 

U, becomes  

 

1
t

t

0 0
0 1 0
0 0

−⎡ ⎤Λ
⎢ ⎥= ⎢ ⎥
⎢ ⎥Λ⎣ ⎦

U  (3) 

from which C = U2 provides the necessary information for calculation of various strain 

tensors (Malvern, 1969). Equation (3)  is referred to the principal axes of deformation 

parallel to the rolling (ℓ), long transverse (w) and short transverse (t) directions. In the 

following discussion all tensors will be expressed in this coordinate system. 

 

The logarithmic strain, Eℓn, also called true or natural strain, is a common measure of finite 

deformation produced by processes involving simple geometrical shapes of the workpiece. 

The tensor form of  Eℓn is defined in terms of the right stretch tensor as (Lubliner, 1990) 

 ( )n ln=E U . (4) 

For the example of rolling described above the tensor takes the form  
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( )

( )

t

n

t

n 0 0
0 0 0
0 0 n

⎡ ⎤− Λ
⎢ ⎥= ⎢ ⎥
⎢ ⎥Λ⎣ ⎦

E  (5) 

in terms of the stretch ratio in the thickness direction, Λt. This strain measure has the 

convenient feature that successive increments of strain are additive. In addition, the trace of 

Eℓn vanishes identically for deformation of any magnitude at constant volume.  The 

conventional strain, Ec, is defined in terms of U as  

 c = −E U I . (6) 

For the rolling example  

 

1
t

c

t

1 0 0
0 0 0
0 0 1

−⎡ ⎤Λ −
⎢ ⎥= ⎢ ⎥
⎢ ⎥Λ −⎣ ⎦

E  (7) 

referred to the same principal directions as Eℓn. 

 

Both Lagrangian and Eulerian forms of finite strain tensors are defined in terms of C (in 

this case), allowing for different choices of reference states. The Green-St. Venant 

(Lagrangian) Finite Strain tensor is (Malvern, 1969) 

 
2
−⎛= ⎜

⎝ ⎠

C IE ⎞
⎟ , (8) 

which, for the case of plane strain, becomes  
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2
t

2
t

1 0 0
1 0 0 0
2

0 0 1

−⎡ ⎤Λ −
⎢ ⎥= ⎢ ⎥
⎢ ⎥Λ −⎣ ⎦

E . (9) 

The Almansi (Eulerian) Finite Strain tensor is‡  

 
1

*

2

−⎛ ⎞−
= ⎜

⎝ ⎠

I CE ⎟ , (10) 

whence  

 

2
t

*

2
t

1 0 0
1 0 0 0
2

0 0 1 −

⎡ ⎤− Λ
⎢ ⎥= ⎢ ⎥
⎢ ⎥− Λ⎣ ⎦

E . (11) 

for rolling. 

 

For some purposes it is useful to express the work of homogeneous deformation in a 

deformation process as the product of a single, scalar measure based on the state of strain at 

the end of the process and a similar measure of the flow stress of the material. The 

effective, or equivalent, strain, based on an analogous definition for incremental strain 

(Malvern, 1969), is such a quantity. For a particular strain tensor, Es, the effective strain is 

defined as  

 s
ˆ4II

3
ε = E , (12) 

 

‡ Note that equations (10) and (11) apply in the present case only because the right and left Cauchy-Green 
tensors are equal due to the absence of bulk rotation. 
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where  is the second invariant of the deviatoric strain tensor at the end of the 

deformation process. This invariant can be written as 

s
ˆIIE

 ( )(
s

2
ˆ s s s

1II : Tr
2

)⎡ ⎤= −⎢ ⎥⎣ ⎦E E E E  (13) 

where Tr(Es) is the trace of Es and Es:Es = Tr(Es·Es) is the inner product of Es with itself. 

The factor of 4/3 is chosen so that an isochoric, uniaxial tensile strain results in an effective 

strain equal to the tensile strain. The conjugate effective stress in this case is the uniaxial 

tensile stress. Based on equations (12) and (13), expressions for effective bulk strains can 

be written in terms of Λt using equations (5), (7), (9) and (11). For the particular case of 

bulk deformation examined in the present study, where the Right and Left Cauchy-Green 

tensors are equal, the equivalent strain is the same whether calculated from the Lagrangian 

or Eulerian finite strain tensor. 

3. Finite Local Strain Measures Based on Networks of Internal Boundaries 

Networks of inter- and intra-phase interfaces in polycrystalline alloys deformed by various 

deformation processes often develop symmetries based on those of the associated 

processes. The spatial variation of the mean intercept density, ( )LP t , the number of 

intersections per unit length of a test line parallel to the unit vector, t, with a selected class 

of internal boundaries, is a common measure of the anisotropy of such a network. The 

surface area per unit volume of these boundaries, SV, depends on LP , the average value of 

 over all possible orientations of test lines, through the relationship ( )LP t

 VS 2P= L . (14) 
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When the boundaries considered are grain boundaries 1
LL P−= , the mean distance between 

grain boundaries, is the global quantity commonly used to relate mechanical properties, 

such as yield stress, to the microstructure.  

 

When deformation is anisotropic, the resulting internal boundary network also deforms 

anisotropically, which can influence subsequent mechanical behavior that depends on the 

orientation of internal boundaries relative to the applied principal stresses. Measurements of 

this anisotropy are based on a statistical counting process in which test lines having a total 

length, L, and lying parallel to a direction, t, with known orientation relative to a reference 

direction, are superimposed on a plane of observation. The number of intersections, N, of 

test lines with a selected class of boundaries in the section, divided by L gives PL(t) for that 

class of boundary.  

 

A proper three-dimensional determination of  ( )LP t  requires measurements on three non-

coplanar sections intersecting in the same point. The value of LP  so determined is then 

assigned to the point in common to these sections. In practice this is not possible, since the 

destructive process of preparation of metallographic sections for each measurement makes 

it impossible to include comparable neighborhoods of the common point on the three 

planes of observation.  In addition, the array of test lines employed defines a “gauge 

volume” for the measurement, having the point of intersection of planes of observation as 

its centroid. For a given statistical accuracy, the shape and size of this volume will vary 

with the extent of the anisotropy. Values of ( )LP t , SV and LP  associated with the common 
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point can be considered field properties of the microstructure defined by the usual limiting 

process of considering them to be the limiting values of volume averages over successively 

small gauge volumes as the gauge volume approaches zero. These points will be discussed 

further in a later section. 

 

 Weak anisotropy as defined by Kanatani (1984) can be expressed 

 ( ) ( )L
1P

L
= =t

t
tMt , (15) 

where the tilde indicates the transpose of the column vector, t, and M is a symmetric, 

second rank tensor called the Microstructural Anisotropy Tensor (MAT) (Hartley, 2006).  

Since LP is the average of PL(t) over all possible orientations of t, 

 ( ) ( )
2

L
S

Tr1P d
4 3

= =
π ∫

M
tMt n  (16) 

where S2 is the set of all surface normals to the unit sphere, dn is the element of area on the 

surface of the unit sphere§ and Tr(M) is the trace of M. For a completely isotropic network 

of internal boundaries 

 LP=M I  (17) 

where I is the identity matrix. Thus the representation quadric for M is a sphere with 

radius
L

1
P

.  

 

§ This notation for the element of surface area is employed to emphasize that the relationship is independent 
of coordinate system. 
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To utilize an internal boundary network as an embedded grid for the purpose of measuring 

strain, consider a vector x = t |L(t)| in the reference state deformed to an image, x′ =   t′ | 

L′(t′)|, in the deformed state. In both cases an equation of the form of equation (15) gives 

the spatial dependence of the intercept density.  Both x and t are related to their images in 

the deformed state by the deformation gradient, F (Malvern, 1969): 

 and′ ′= =x Fx t Ft . (18) 

Substituting equation (16) into equation (15) and the corresponding expression for the 

deformed state gives the relationship 

 ′=M FM F  (19) 

relating the MATs in the reference and deformed states.  

 

Multiplying equation (19) by the appropriate inverses gives 

 1 1− − ′=F MF M . (20) 

In the following definitions of strain, the reference state is chosen to be isotropic with a 

MAT of the form of equation (17), so that 

 
( )

1 1 3
Tr

− − ⎛ ⎞
′= ⎜ ⎟⎜ ⎟

⎝ ⎠
F F M

M
. (21) 

Equation (8) defines the Finger tensor, B-1, the inverse of the Left Cauchy-Green Tensor 

(Lubliner, 1990). The Right Cauchy-Green Tensor, C, is defined as 

  (22) =C FF
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since M′ is symmetric. Also, the choice of an isotropic reference state requires that the 

rotation matrix in the polar decomposition of F be I, so the deformations defined by this 

process are pure stretches. Then the right and left stretch tensors, U and V, respectively, are 

equal and  

 = =U V C .                                                      (23) 

During a deformation process we assume that changes in the network of internal boundaries 

occur primarily to accommodate changes in shape of the grains and/or phases that the 

boundaries enclose. Since these changes in shape are due primarily to shear processes 

occurring at essentially constant volume, measures of strain based on the change in shape 

of an internal boundary network refer to plastic strain, which, in the presence of relatively 

negligible elastic strain, is also the total strain. Consequently internal stresses cannot be 

calculated from such measures.  The condition of constant volume requires that the 

determinant of the deformation gradient, |F|, be unity (Malvern, 1969). Then by equation 

(21)  

 
( ) 3

Tr
3

⎡ ⎤
′=⎢ ⎥

⎣ ⎦

M
M  (24) 

for deformation at constant volume.  

 

Using the above relationships, the conventional grain strain, Ee, equation (6), becomes 

 ( ) 1

e

Tr
3

−′
= −

M M
E I , (25) 

and the Logarithmic grain strain, Eℓ, equation (4) is 
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( ) ( )1Tr1 n n

2 3
−

⎧ ⎫⎡ ⎤⎪ ⎪′= +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

M
E M . (26) 

Also by equation (8) the Green-St. Venant, or finite Lagrangian, grain strain tensor is 

 ( ) 1Tr1
2 3

−⎡ ⎤
′= −⎢ ⎥

⎣ ⎦

M
E M I  (27) 

for the network. The Almansi, or finite Eulerian, grain strain Tensor, equation (10), can be 

expressed as 

 
( )

* 1 3
2 Tr

⎡ ⎤′
= −⎢ ⎥

⎢ ⎥⎣ ⎦

ME I
M

 (28) 

since there is no rotation due to the choice of an isotropic reference state. In all cases for 

grain strains an effective grain strain can be calculated from the components of appropriate 

grain strain tensors using equation (12).  

 

The choice of reference state is an important consideration in the calculation of strains 

defined by equations (28),(27) (25) and(26). For the Eulerian finite strain measure based on 

the deformation of a grain boundary network, Hartley (2006) proposed that the reference 

state for a deformed specimen be a hypothetical specimen having an isotropic network of 

grain boundaries with the same surface area per unit volume as the deformed specimen. 

This results in Tr(M) = Tr(M′), permitting the determination of relevant quantities to be 

made on the same specimen. It is also consistent with the use of the current state as a 

reference in the definition of Eulerian strain. This choice of reference state results in E* 

being completely deviatoric, as can easily be verified by direct substitution of the preceding 

relationship into equation (28).  

13 



 

The initial state is an alternative reference state, consistent with the Lagrangian definition 

of strain, equation (27).  In this formulation the reference state is still isotropic, but the 

value of LP  is that for material in the undeformed state. In typical metal forming operations 

the starting material possesses some residual microstructural anisotropy characteristic of its 

thermo-mechanical history. Although this anisotropy generally has a different symmetry 

than that introduced by the subsequent processing operations, the value of LP obtained from 

stereological measurements on the starting material is an invariant, hence it is the 

appropriate value to use in equation (17) for the MAT of the reference state. Also, in 

analyzing a deformation process in which the deformation is increased in successive 

increments of bulk strain, the initial value of LP can be estimated by extrapolation to zero 

bulk strain the values of LP for successive increments. This is the procedure employed for 

analysis of data in the present study. The initial condition is also the appropriate reference 

state for the conventional strain and the logarithmic strain, defined by equations (25) and 

(26), respectively. Values of effective grain strain can be calculated from the components 

of the grain strain tensors according to equation (12). 

 

In the simplest model of large-scale plastic deformation, assuming that the number of 

grains per unit volume remains constant and deformation is homogeneous and uniform 

throughout the specimen, bulk strain and grain strain are equal (Hartley and Ünal, 1983; 

Hartley, 2006). However in practice deformation is never completely uniform and some 

fragmentation of grains occurs, leading to an increase in grain boundary area per unit 
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volume. These effects cause the grain strains measured at various points in the interior of a 

specimen to differ from those measured from changes in the exterior dimensions. 

Nevertheless, grain strains averaged across a cross-section of the specimen normal to a 

principal direction of deformation should equal the bulk strain in that direction. This study 

will not test this hypothesis. 

4. Experimental Program 

The grain boundary network images were obtained from optical digital micrographs of 

lightly-etched metallographic specimens, taken from rolled sheets of ultra-low (0.007 wt%) 

carbon steel.  Five sets of images were obtained, one from each rolling condition, after 

actual rolling strains of 9.13%, 19.1%, 31.3%, 40.0%, and 48.7%.  Each subsequent rolling 

condition thereby represents an additional 10% (nominal) reduction in thickness per pass 

from the as-received, 0.115”-thick hot-band rolled condition.  Care was taken not to reverse 

the rolling direction on each subsequent pass.  All rolling was carried out at room 

temperature, with a surface feed rate of 25 surface feet per minute.   

 

Metallographic specimens were obtained from the centroids of the rolled sheets, with great 

care taken to maintain orientation of the prepared specimen surface within ± 1º of the 

global sheet directions. Fig. 1 illustrates how three mutually-perpendicular metallographic 

sections were prepared from each rolled specimen; (A) containing the Rolling Direction 

(RD) and Long Transverse (LT), or width, directions; (B) containing RD and Short 

Transverse (ST), or thickness, directions, and; (C) containing LT and ST directions.  
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Attention was paid in obtaining the three sections as close together as possible, to reduce 

the influence of a finite “gauge volume” on the results of the analyses. 

[INSERT FIG. 1] 

Fig. 1.  Specimen Location and Coordinate System Employed for Metallographic Analysis 

Figs. 2(a) - (f) show a representative set of micrographs for a rolling strain of 31.3%, both 

in the as-etched (a) – (c), and as-binarized (d) – (f) conditions.  Note the significant 

anisotropy of the grains due to rolling.   

[INSERT FIGS. 2 (a-f)]  

Rapid determination of PL was made possible by using a PASCAL-based computer code 

(Auto-MAT.2D) which runs within the NIH Image/Scion Image freeware image processing 

environment (Mullens, 2003).  This code allows the user to input the total number of 

parallel test lines to be cast on a previously binarized (thresholded) digital image of a grain 

boundary network.  The code then calculates the average number of grain boundary 

crossings per unit test line length within a circular window centered on the centroid of the 

image.  The angle of the test lines (α) is then rotated at 1º intervals in the plane of the 

image until the entire grain boundary network is sampled; (0 ≤ α ≤ π).  It was found that an 

angular resolution of 1º was sufficient to ensure sufficient resolution of PL (α) without 

oversampling.   

5. Results 

5.1. General 

The following sections compare eigenvalues of the grain strain tensors computed using 

various definitions of strain with the corresponding bulk strain components calculated from 

16 



the reduction in thickness by rolling and assuming plane strain in the LT direction. 

Consequently, for all measures of strain the bulk strain component in the LT direction was 

zero. In all measures of grain strain, the eigenvector corresponding to the largest positive 

eigenvalue occurred within a few degrees of the RD, the eigenvector associated with the 

largest negative eigenvalue occurred similarly close to the ST direction and the remaining 

eigenvector was closely parallel to the LT direction, in agreement with earlier observations 

(Hartley and Dehghani, 1987; Hartley, 2006). Components of the grain strain tensors in the 

LT direction are, in general, not zero but are generally small in magnitude compared to the 

other two. These values are all plotted on the zero bulk strain ordinate to illustrate the range 

of values obtained. 

 

As described earlier, the reference state for the Lagrangian, Conventional and Logarithmic 

measures of strain was a hypothetical isotropic structure with the same surface area per unit 

volume as the actual undeformed structure. Since data for this condition was not available, 

the surface area per unit volume calculated from measurements on the deformed specimens 

was determined from equations(14), (16) and (17) for each value of reduction in thickness. 

The linear extrapolation of these values, plotted against the logarithmic bulk strain in the 

rolling direction, to zero bulk strain provided a value for LP  in the initial, undeformed 

condition. Determinants of M′ for the various deformed conditions were calculated and 

compared to |M| = [Tr(M)/3]3 to ascertain whether the condition of constant volume was 

satisfied during deformation according to equation (24). Table 1 presents these values. 
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Table 1 

Determinants of Microstructural Anisotropy Tensors  
% Reduction in Thickness   |M| x 103 

  9.13                                                   1.8 
19.1      2.0 
31.3      2.3 
40.0      3.0 
48.7      2.6  
 

Fig. 3 shows the variation of LP with the logarithmic bulk strain component in the RD. 

[INSERT FIGURE 3] 

Fig. 3. Mean linear intercept of Ferrite boundaries vs. Logarithmic Bulk Strain in the RD 

 

The following sections present the relationships between bulk and grain strains for the 

various components of strain for the strain tensors discussed earlier. 

 

5.2. Grain Strain Components and Bulk Strain Components 

Fig. 4 shows components of the logarithmic grain strain tensor plotted against 

corresponding components of the bulk strain. In order to display results for all strain 

components in the same quadrant, Fig. 4 and subsequent similar graphs show the negative 

of the grain strain component in the ST direction plotted versus the negative of the bulk 

strain in the same direction and the negative of the grain strain component in the LT 

direction is plotted versus the bulk strain component in the RD.  

[INSERT FIGURE 4] 

Fig. 4. Components of Logarithmic Grain Strain vs. Logarithmic Bulk Strain 

18 



The lines represent linear, least-squares fits to the data for strain components in the 

indicated directions. 

 

Fig. 5 presents the components of the Conventional Grain Strain tensor as functions of the 

corresponding components of the Conventional Bulk Strain tensor. As in the previous 

section all components are plotted in the positive quadrant, but it should be noted that the 

components of grain strain in the LT and ST directions and the bulk strain in the ST 

direction are negative.  

[INSERT FIGURE 5] 

Fig. 5. Conventional Grain Strain Components vs. Conventional Bulk Strain Components 

Figs. 6 and 7 show the components of the Green-St. Venant (Lagrangian) and Almansi 

(Eulerian) finite grain strain tensors as functions of the corresponding components of the 

bulk strain tensors. As for the previous cases, the grain strain components in the ST and LT 

directions are negative and the negative of the bulk strain in the ST direction is plotted.  

[INSERT FIGURES 6 AND 7] 

Fig. 6. Lagrangian Grain Strain Components vs. Lagrangian Bulk Strain Components 

Fig. 7. Eulerian Grain Strain Components vs. Eulerian Bulk Strain Components 

From Figs. 4 – 7 it is evident that the assumption of plane strain is not quite satisfied for the 

grain strain measurements using any of the strain measures. Consequently it is useful to 

employ effective strain to compare the state of strain at the center of the rolled sheet. Fig. 8 

illustrates this comparison using each of the four strain measures to calculate an effective 

strain. 

[INSERT FIGURE 8] 

19 



Fig. 8. Effective Grain Strains vs. Effective Bulk Strains 

It is apparent from Fig. 8 that all measures of effective strain provide a consistent  

correlation between grain and bulk strains regardless of the definition of strain employed. 

The linear relationship plotted in Fig. 8 is a composite result where the effective grain strain 

computed with all definitions is employed with all computations of effective bulk strain and 

fitted to a linear form. The slope of this expression is 0.316 and the intercept is -0.007.   

6. Discussion 

6.1. Estimate of Errors of Measurement Relative to Second Order Fit 

 There exist certain directions within the rolled specimens, i.e. parallel to RD, LT or ST, 

which are contained in exactly two of the three section planes used for the determination of 

PL.  For example, the ST direction is vertical in Fig 1(e), and horizontal in Fig 1 (f).  With a 

vanishingly-small gauge volume, one would expect that the values of PL calculated in these 

directions from both micrographs would be identical.  The fact that there is a small but 

significant difference between the two values of PL suggests a basis for a simple error 

analysis. The following simple treatment addresses the effect of the finite gauge volume on 

the results for PL(θ, φ). 

 

 First, the experimental PL(θ, φ) data obtained from each of the mutually-perpendicular 

section planes is combined, and a least-squares curve fit of the form of Eqn. (15) is applied, 

where t1 = cosφ, t2 = cosθ sinφ  and t3 = sinθ sinφ  with x1 parallel to RD, x2 parallel to LT, 

and x3 parallel to ST.  Next, the absolute difference, ΔPL, between the PL values obtained 

on each of the two intersecting, perpendicular planes ( L LP , P′ ′′ ) is obtained: 
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 L L LP P P′ ′′Δ = − . (29) 

Finally, the relative error is ΔPL divided by the value of the corresponding value of PL 

given by the curve fit in the common direction of measurement, , to wit: *
LP

 L LL
* *
L L

P PP
P P

′ ′′−Δ
= . (30) 

The data show no observed systematic variation of the relative error with increasing rolling 

strain. 

 

Values of  measured in the ST direction (0.015) are much smaller than those 

measured in either the RD or LT directions (0.062 and 0.079, respectively.)  Taking the 

arithmetic mean of these values gives an overall error of 0.052, or ~ 5%.  This error 

corresponds to a minimum gauge volume of 8.0×10

*
L LP / PΔ

6 μm3, calculated from the size of the 

field of view on each mutually-perpendicular sectioning plane, i.e. 200μm × 200μm × 

200μm.  Although a quantitative relationship between the gauge volume and the expected 

error in PL is not immediately forthcoming from this analysis, it is reasonable to expect that 

this error will diminish as the gauge volume is reduced. However, this reduction can only 

be practically accomplished up to the point where the number of internal boundaries 

sampled is still large enough for statistical significance of the intercept density.  Further 

uncertainties in measurement arising when the strain gradient is large relative to the strain 

require the use of 3-D boundary intercept data obtained by manual or automated serial 

sectioning, tomography or similar experimental techniques to ascertain the size of sampled 

volume necessary to achieve a desired accuracy. 
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6.2. Association of the Measured Grain Strain with a Specific Point 

The grain strains obtained by any of the definitions employed earlier apply to a point at the 

centroid of the effective gauge volume for the measurements. For the examples presented 

the experimental technique requires that measurements be made on three mutually 

perpendicular planes that do not contain a common point. Consequently it is necessary to 

assume that the gradients in microstructure are sufficiently small over the effective gauge 

volume that the measurements obtained on each plane also apply to a parallel plane passing 

through the centroid of the gauge volume. This point is illustrated in Fig. 9, which shows a 

schematic illustration of the locations of the planes of polish (faces of the cube) and the 

parallel planes, to which the measurements are assumed to apply, intersecting at the center 

of the cube. The ellipsoid inside the cube represents the quadratic surface PL(t) obtained 

from a least-squares fit to the measurements. 

 

Any errors or inconsistencies arising from the assumption of negligible gradients in the 

microstructure over the cube defined by the planes of polish will be eliminated by 

measurements on a three dimensional data set obtained from serial sectioning or other 

similar technique. Such data can be obtained from reconstructions of parallel serial sections 

to reveal the three-dimensional character of grain boundaries and other internal interfaces in 

a sample. Points within the reconstructed volume can then be selected for strain 

measurements. Since the locations of internal interfaces are now quantitatively known from 

the reconstruction, it is possible to construct a set of test lines with arbitrary orientations 

passing through each point. For each point the strain would be determined from the three-
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dimensional variation of the density of intercepts with internal interfaces by a random set of 

test lines passing through the point using the techniques described in this work. 

6.3. Relationship Between Bulk and Grain Strains 

The fact that the bulk and grain strains are not equal is due to the generally non-uniform 

state of strain in the interior of the deformed material. That is, basing a measurement of 

bulk strain on changes in the external dimensions of the material and applying this measure 

to a point in the interior assumes that the deformation occurs uniformly throughout the 

material. However, even deformation processes with simple geometries are known to result 

in non-uniform distributions of strain throughout the workpiece. Consequently the grain 

strain, which is a measure of the total strain at a point in the interior of the workpiece, 

should not be expected to be numerically equal to the bulk strain in general. 

 

It is important to recognize that grain strain is a measure of local total strain; hence it is not 

suitable for computation of internal stresses, which result from strain of the crystal lattice. 

A complete description of the components of strain at a point requires that both the total 

strain and the lattice (or elastic) strain be measured at the same point. Then the strain 

components can be obtained by the familiar multiplicative decomposition due to Kröner 

(1960) and Lee and Liu (1965). 

 

7. Conclusions 

The network of grain boundaries in a single phase material provides a useful internal 

network for the determination of the internal total strain field (grain strain) in a deformed 
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crystalline material. For this purpose the reference state from which the strain is measured 

is a hypothetical, isotropic (equiaxed) boundary network having the same boundary surface 

area per unit volume as the deformed specimen. For deformation processes that involve 

congruent changes in shape from the initial state to the final state, the grain strain so 

measured is proportional to the bulk strain calculated from changes in the overall specimen 

dimensions. Three-dimensional states of bulk strain described by an effective bulk strain 

produce a proportional effective bulk strain within the interior of the material. These 

conclusions apply regardless of the type of strain definition employed. 

 

The effective gauge volume for a grain strain measurement depends on the mean 

dimensions and anisotropy of grains. Some of the uncertainties introduced by making 

measurements on two-dimensional planes of polish that do not intersect in a common point 

can be significantly reduced or eliminated by the use of three-dimensional reconstructions 

of selected volumes of material obtained by serial sectioning or tomography. 

Grain strain cannot be employed to determine internal stresses, but when measured 

simultaneously with lattice strain at the same point, it provides the necessary information 

for the decomposition of finite strain into plastic and elastic (lattice) components in the 

interior. 

 

A major application area for the techniques developed in this study is the experimental 

determination of the internal total strain field throughout a deformed material for the 

purposes of comparison with corresponding strains calculated with finite element programs 

employing various physical and constitutive assumptions. Such experiments performed in 
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parallel with finite element studies of processes involving severe plastic deformation can 

lead to the development of improved constitutive models for material behavior and the 

formulation of finite element codes that more accurately reflect the behavior of real 

materials. 
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Figure Captions 

Fig. 1.  Specimen Location and Coordinate System Employed for Metallographic 

Analysis 

Fig. 2.  Representative digital micrographs of ultra-low carbon steel sheet, rolled 

to 31.3% total reduction (3 passes); 

(a) as-etched, RD – LT plane; 

(b) as-binarized, RD – LT plane; 

(c) as-etched, RD – ST plane; 

(d) as-binarized, RD – ST plane; 

(e) as-etched, LT – ST plane; 

(f) as-binarized, LT – ST plane. 

Fig. 3. Mean linear intercept of Ferrite boundaries vs. Logarithmic Bulk Strain in 

the RD 

Fig. 4. Components of Logarithmic Grain Strain vs. Logarithmic Bulk Strain 

Fig. 5. Conventional Grain Strain Components vs. Conventional Bulk Strain 

Components 

Fig. 6. Lagrangian Grain Strain Components vs. Lagrangian Bulk Strain 

Components 

Fig. 7. Eulerian Grain Strain Components vs. Eulerian Bulk Strain Components 

Fig. 8. Effective Grain Strains vs. Effective Bulk Strains 

Fig. 9. Schematic Illustration of Gauge Volume of Measurements 
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(a)  (d)  

(b)   (e)   

(c)  

50 μm 

(f)   
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